Posts List

Against A/B Tests

Against A/B Tests

The notion of an A/B test is premised on the fundamentally flawed assumption that there exists one version of some treatment that is better on average for all users. Analytics practitioners should reject the assumptions of homogeneity and start designing systems that allow for (and encourage) non-binary outcomes of tests.

The Blacker the Box

The Blacker the Box

There has been a lot of discussion in the data science community about the use of black-box models, and there is lots of really fascinating ongoing research into methods, algorithms, and tools to help data scientists better introspect their models. While those discussions and that research are important, in this post I discuss the macro-framework I use for evaluating how black the box can be for a prediction product.