All Posts

The Analytics Engineer

The Analytics Engineer

The landscape of the data and analytics world is shifting rapidly. In many companies, the roles and responsibilities of data engineers, analysts, and data scientists are changing. This change has created the need for a new role on the data team which some have taken to calling the “analytics engineer”.

Creating a Data road map

Creating a Data road map

As the new year rolls around, many Data leaders are thinking about (or have already created) 2019 road maps for their team and function. Since Data often works cross functionally with other teams, it’s key that you consider other team’s priorities and objectives in developing your road map. Below is a blueprint you can use to get started.

Against A/B Tests

Against A/B Tests

The notion of an A/B test is premised on the fundamentally flawed assumption that there exists one version of some treatment that is better on average for all users. Analytics practitioners should reject the assumptions of homogeneity and start designing systems that allow for (and encourage) non-binary outcomes of tests.

Building a Data Practice from Scratch

Building a Data Practice from Scratch

The first data hires at an early stage startup face numerous challenges — an infrastructure built to run the business but not analyze it, an organization hungry for information without a process for requesting and prioritizing it, and little documentation on how anything is done. What should they do first?

Learn the Overlaps: Advice for the Aspiring Data Scientist

Learn the Overlaps: Advice for the Aspiring Data Scientist

I often get asked by junior data professionals how they can improve as data scientists. Today I will outline a generic framework for thinking about learning and provide a few concrete examples in support of it. These are tools that I still employ in my day to day learning and growing as a data professional.

What is Production?

What is Production?

I have spoken to many fellow analytics practitioners who are adament that they want their team to never touch “production.” While there are good reasons to be careful whenever you make changes that could impact customers, I believe that as software becomes more data-driven it is critical to find safe ways to empower Analytics teams to build and deploy data-driven applications.

Code as Configuration

Code as Configuration

Often, Data and Analytics teams go under-utilized in their organization because they can not collaborate effectively with the broader Technology and Software Engineering teams. By designing software following the “code as configuration” pattern, software engineers can enable and empower Analytics teams to work independently: both taking advantage of their technical skills and removing drudge-work responsibility from the Software Engineering team — a win-win.

A chat about A/B testing

A chat about A/B testing

A hypothetical tech company just completed an A/B test of two experiences, A (the test) and B (the control). The test was set up properly and executed successfully. The following dialogue is taking place between Diane the Data Scientist and Marty the Marketing Analyst at the conclusion of the test.

Wrong Data Can Still Be Right

Wrong Data Can Still Be Right

Everyone has their own reaction when discovering wrong data. It might start with a double take or maybe an itching feeling that the number should be a higher. However it starts, it usually leads to an investigation to discover what went wrong. While this is a very normal reaction, I offer an alternative. Before turning over every stone in your ETL, ask a few questions to discover if your “wrong” data really is wrong. In this post I explore what wrong means when it comes to data (spoiler alert: it is not black and white). I also offer a few tricks to diagnose which of the buckets of wrong your problem falls into. Yes, this approach may add an extra step or two in your process, but it can also save a day of work trying to fix something that isn’t even broken.

Adding Context to Your Analysis with Annotations

Adding Context to Your Analysis with Annotations

Anyone who has worked in digital analytics will tell you that day over day performance can be volatile. Shifts in marketing mix can cause fluctuating e-commerce conversion rates, new feature launches can lead to sudden and temporary swings in engagement rates and onsite bugs can result in anomalies in abandonment rates. Some of these scenarios can be diagnosed through extensive segmentation of data. Others, like a dropped analytics snippet or a bug with your payment processor, cannot be so easily uncovered. The simplest thing to do when events like these take place is to take a mental note and count on your memory for when you inevitably have to revisit that data in the future. Unfortunately, taking a mental note isn’t a scalable solution. While it’s not the most thrilling task for a data team, keeping a record of the online and offline events that affect your business is a practice that is well worth the (small) time investment.