All Posts

Adding Context to Your Analysis with Annotations

Adding Context to Your Analysis with Annotations

Anyone who has worked in digital analytics will tell you that day over day performance can be volatile. Shifts in marketing mix can cause fluctuating e-commerce conversion rates, new feature launches can lead to sudden and temporary swings in engagement rates and onsite bugs can result in anomalies in abandonment rates. Some of these scenarios can be diagnosed through extensive segmentation of data. Others, like a dropped analytics snippet or a bug with your payment processor, cannot be so easily uncovered. The simplest thing to do when events like these take place is to take a mental note and count on your memory for when you inevitably have to revisit that data in the future. Unfortunately, taking a mental note isn’t a scalable solution. While it’s not the most thrilling task for a data team, keeping a record of the online and offline events that affect your business is a practice that is well worth the (small) time investment.

Building Your Analytics Brain Trust

Building Your Analytics Brain Trust

Imagine you hit a roadblock while trying to tackle a complex piece of analysis, using a python function or designing your first data organization. What do you do? Of course you start with an internet search, but what do you do when you’re really stuck? I like to phone a friend. In this post I explore my favorite learning style – learning from others – and the steps to building your own analytics brain trust. I have used this approach to solve many challenges (including building an Analytics team from the ground up) and I believe it can be almost universally applied.

The Blacker the Box

The Blacker the Box

There has been a lot of discussion in the data science community about the use of black-box models, and there is lots of really fascinating ongoing research into methods, algorithms, and tools to help data scientists better introspect their models. While those discussions and that research are important, in this post I discuss the macro-framework I use for evaluating how black the box can be for a prediction product.

Prioritizing Prioritization

Prioritizing Prioritization

The sprint prioritization meeting is integral to the agile process. While many people may be more familiar with meetings such as sprint planning, stand up, back log grooming, and retro, the sprint prioritization meeting often receives less attention. I suspect this is because sprint prioritization is a particularly difficult process to deploy successfully. A good prioritization process requires thoughtful ticket descriptions written in advance, a collaborative review of each ticket in the context of all of the other tickets, and the buy-in and coordination of all of the analytics stakeholders. To top it all off, you have to squeeze this process into the end of each sprint, in advance of sprint planning… There is a reason why scrum masters are typically referred to as cat herders.

Bad communication kills good analytics

Bad communication kills good analytics

Poor communication within an Analytics team and between that team and the rest of the company, leaves highly skilled Analysts solving the wrong questions, lacking support for big ideas and and ultimately departing the company unfulfilled by their work. In this post I will discuss ways a team can improve performance and employee satisfaction by focusing on constructive conversations.

7 Steps to Reliable Web Analytics Data

7 Steps to Reliable Web Analytics Data

A web analytics implementation project often starts with quite a lot of fanfare and resources. There will usually be an audit and needs assessment process to determine what tracking needs to be implemented or fixed, an implementation project plan identifying task owners and dates, and earmarked hours from the development team for tasks like implementing tracking code and building a data layer. All of this generally ensures that there is satisfactorily comprehensive and accurate tracking in place at the end of the project. So why do we still regularly see web analytics issues?

Agile Analytics, Part 3: The Adjustments

Agile Analytics, Part 3: The Adjustments

Agile software engineering practices have become the standard work management tool for modern software development teams. Are these techniques applicable to analytics, or is the nature of research prohibitively distinct from the nature of engineering? In this post I discuss some adjustments to the scrum methodology to make the process work better for Analytics and Data Science teams.

Should Your Data Warehouse Have an SLA? (Part 2)

Should Your Data Warehouse Have an SLA? (Part 2)

A data warehouse Service Level Agreement (SLA) is an important building block for a data-driven organization. To help get you started, in part one I introduced a data warehouse SLA template - a letter addressed to your stakeholders. In this post I walk through the meat of the SLA template: services provided, expected performance, problem reporting, response time, monitoring processes, issue communication and stakeholder commitment. If you have not already read part one, I highly recommend reading it first!

Agile Analytics, Part 2: The Bad Stuff

Agile Analytics, Part 2: The Bad Stuff

This is part 2 of my 3 part exploration of the following question: are Agile engineering practices applicable to analytics, or is the nature of research prohibitively distinct from the nature of engineering? For the agile fans, in part 1 I gave an intro to agile and talked through what I like about the scrum development process for analytics. For the agile nay-sayers, in this post I explore the elements of agile that do not work particularly well with Analytics (issues range from annoyance to downright incompatibility).

The Value of Reordering Lists

The Value of Reordering Lists

The tools and techniques of data science and advanced analytics can be used to solve many problems. In some cases – self-driving cars, face recognition, machine translation – those technologies make tasks possible that previously were impossible to automate. That is an amazing, transformative accomplishment. But I want to sing a paean to a mundane but important aspect of data science – the ability to intelligently put lists of things in a better order. For many organizations, once you have found some insights, and are into the realm of putting data products into production, the most substantial value can be found by identifying inefficient processes and making them efficient. Twenty or thirty years ago, that efficiency-gain might have been addressed by converting a paper-based process to a computer-based process. But now, prioritization – putting things in the right order – can be what it takes to make an impact.